

MID-APRIL TEST 2025-26

PHYSICS

MARKING SCHEME

Class: XII	Time: 1hr
Date: 19.04.25	Max Marks: 25

Section A

1. (a) Electric field intensity	1
2. (d) Zero	1
3. (c) Zero	1
Section B	
4. The conservation of charge is a fundamental principle in physics stating that the total	
electric charge in an isolated system remains constant over time. This means that charge	
cannot be created or destroyed, only transferred from one object to another.	2
5. The surface, the locus of all points at the same potential, is known as	
the equipotential surface. No work is required to move a charge from one point to	
another on the equipotential surface. In other words, any surface with the same electric	
potential at every point is termed as an equipotential surface.	1
(i) Two equipotential surfaces can never intersect.	(.5)
(ii) Always, the electric field is perpendicular to an equipotential surface.	(.5)
6. If the point is a distance x from the $+3Q$ charge, then it is x-4 away from the $-Q$ charge	e. If
we define right as positive, we can write this as:	
$k (3Q / x^2) - k (Q / (x - 4)^2) = 0$	1
where the minus sign in front of the second term is not the one associated with the	
charge but the one associated with the direction of the field from the charge.	
The k's and Q's cancel. Re-arranging gives:	
$3 / x^2 = 1 / (x - 4)^2$	
$3(x^2 - 8x + 16) = x^2$	
$x^2 - 12x + 24 = 0$	1
Solving this using the quadratic equation gives two answers: $x = 2.54$ cm and $x = 9.4$	6
cm.	1
7. Since both the points P and Q are on the equatorial line of the dipole and $V = 0$ at ever	У
point on it, work done will be zero. Also the force on any charge is perpendicular to t	he
equatorial line, so work done is zero. 2	

8. $F = \frac{kq_1q_2}{r^2}$ $F = \frac{q_1q_2}{4\pi\epsilon_0 r^2} = \frac{9 \times 10^9 \times 2 \times 10^{-7} \times 3 \times 10^{-7}}{0.3^2}$ Solving, we get, $F = 6 \times 10^{-3} N$

Section C

 $\tau = PE \sin \theta$ = q (2a) E sin θ $8\sqrt{3} = q \times 0.02 \times 10^5 \times \sin 60^\circ$ $\Rightarrow q = 8 \times 10^{-3} C$ P.E. = - pE cos θ = - q (2a) cos θ = - 8 × 10⁻³ × 0.02 × 10⁵ × cos 60° = - 8 J

10. A parallel plate capacitor is a type of capacitor that is constructed by two parallel conducting plates and a dielectric material between them?

We know electric field due to charged metallic plate

$$E_{1} = \frac{\sigma}{2 \in_{0}}$$
 (as charge present only one surface)
Similarly $E_{2} = \frac{\sigma}{2 \in_{0}}$

Hence net field between two plate

 $\mathsf{E} = \mathsf{E}_1 + \mathsf{E}_2 = \frac{\sigma}{2 \in_0} + \frac{\sigma}{2 \in_0} = \frac{\sigma}{\in_0}$

Now potential difference between two plate

$$V = Ed = \frac{\sigma}{\epsilon_0}d$$
$$\Rightarrow q = CV \Rightarrow C = \frac{q}{V} = \frac{\sigma A}{\frac{\sigma d}{\epsilon_0}} = \frac{A \epsilon_0}{d}$$
$$\Rightarrow C = \frac{A \epsilon_0}{d}$$

The capacitance of a capacitance increases when a dielectric is introduced between its plates because the capacitance is related to the dielectric constant k by the equation: $C=k\in_0A/d$. 3

9.

2

ANSWER

Coulomb's law states that the electrostatic force between two point charges is directly proportional to the product of charges and inversely proportional to the square of distance between them.

$$\overrightarrow{F}_{12} = rac{1}{4\pi\epsilon_o} rac{q_1q_2}{r_{12}^2} \widehat{r_{12}}$$

and

$$\overrightarrow{r_{12}} = \overrightarrow{r_2} - \overrightarrow{r_1}$$
$$\overrightarrow{r_{12}} = \overrightarrow{r_2} - \overrightarrow{r_1}$$
$$\overrightarrow{r_12} = |\overrightarrow{r_2} - \overrightarrow{r_1}|$$

According to Coulomb's law, electric force on charge q_2 due to charge q_1 ,

$$\vec{F}_{21} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\vec{r}_{21}|^2} \hat{r}_{12}$$

Here, r_{21}^{\wedge} is a unit vector moving from q_1 to q_2 . Then, $\overrightarrow{}$ 1 $q_1 q_2 \overrightarrow{}$

$$F_{21} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}_{21}|^3} r_{12}$$

$$\vec{F}_{21} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{|\vec{r}_2 - \vec{r}_1|^3} (\vec{r}_2 - \vec{r}_1) \qquad \dots (1)$$

(3)

12.

 \mathbf{or}

Gauss's law in electrostatics : "The surface integral of electrostatic field \vec{E} produced by any source over any closed surface S enclosing a volume V in vacuum, *i.e.*, total electric flux over the closed surface S in vacuum, is $\frac{1}{\varepsilon_0}$ times the total charge (Q) contained inside S, *i.e.*

$$\phi_{\rm E} = \oint \vec{\rm E} \cdot d \vec{\rm S} = \frac{Q_{\rm enclosed}}{\varepsilon_0} \qquad 1$$

$$\oint_{S} \vec{E} \cdot \vec{ds} = \frac{q}{\varepsilon_{0}} \implies \oint_{E} \vec{E} \cdot \hat{n} \, ds = \frac{q}{\varepsilon_{0}}$$

$$\therefore \qquad E \notin ds = \frac{q}{\varepsilon_{0}} \implies E \cdot 4\pi r^{2} = \frac{q}{\varepsilon_{0}}$$

$$\therefore \qquad E_{r} = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{q}{r^{2}}$$
At any point on the surface of the shell,
$$r = R$$

$$\therefore \qquad E_{R} = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{q}{R^{2}}$$
If σ is charge density
$$\therefore \qquad q = 4\pi R^{2}\sigma$$

$$\therefore \qquad E_{R} = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{4\pi R^{2}\sigma}{R^{2}}$$
Therefore,
$$E_{R} = \frac{\sigma}{\varepsilon_{0}} \qquad 1.5$$

Inside the surface of the shell Electric field will be Zero because q=o.
